Confusion matrix results in HTML
binaryCMAsHTML.Rd
Prints results from binaryCM()
into a nice HTML table format.
Usage
binaryCMAsHTML(
x,
y,
ref.description = NULL,
digits = 4,
seed = 20,
num.boot = 1000,
conf.level = 0.95,
show.ci = TRUE
)
Arguments
- x
vector of reference classes
- y
vector of predicted classes
- ref.description
description of classes
- digits
number of digits to round p-values to
- seed
random seed for bootstrap resampling
- num.boot
number of bootstrap confidence intervals
- conf.level
confidence level. Defaults to 95%.
- show.ci
if
TRUE
(default), the confidence intervals are shown.
Value
A character string that can be parsed as HTML code to display a nice confusion matrix summary.
See also
Other confusion matrix functions:
binaryCM()
,
multiClassCM()
Examples
# 95% CI from 5 bootstraped samples
library(htmlTable)
set.seed(547)
n <- 20
x <- rbinom(n, size = 1, prob = 0.6)
y <- rbinom(n, size = 1, prob = 0.4)
results <- binaryCMAsHTML(x, y, "Test", num.boot = 1000)
htmlTable(results)
#> <table class='gmisc_table' style='border-collapse: collapse; margin-top: 1em; margin-bottom: 1em;' id='table_3'>
#> <tbody>
#> <tr style='border-top: 2px solid grey;'>
#> <td style='border-top: 2px solid grey; border-bottom: 2px solid grey; text-align: center;'><table><tr><td style="text-align: right; white-space: nowrap;">Reference:</td><td style="text-align: left; white-space: nowrap;">Test</td></tr><tr><td style="text-align: right; white-space: nowrap;">Accuracy (95% CI):</td><td style="text-align: left; white-space: nowrap;">0.55 (0.3421 - 0.7418)</td></tr><tr><td style="text-align: right; white-space: nowrap;">Sensitivity (95% CI):</td><td style="text-align: left; white-space: nowrap;">0.4444 (0.1888 - 0.7333)</td></tr><tr><td style="text-align: right; white-space: nowrap;">Specificity (95% CI):</td><td style="text-align: left; white-space: nowrap;">0.6364 (0.3538 - 0.8483)</td></tr><tr><td style="text-align: right; white-space: nowrap;">PPV (95% CI):</td><td style="text-align: left; white-space: nowrap;">0.5 (0.2152 - 0.7848)</td></tr><tr><td style="text-align: right; white-space: nowrap;">NPV (95% CI):</td><td style="text-align: left; white-space: nowrap;">0.5833 (0.3195 - 0.8067)</td></tr><tr><td style="text-align: right; white-space: nowrap;">kappa (95% CI):</td><td style="text-align: left; white-space: nowrap;">0.0816 (-0.4 - 0.4898)</td></tr></table></td>
#> </tr>
#> </tbody>
#> </table>
results.no.ci <- binaryCMAsHTML(x, y, "Test", num.boot = 1000, show.ci =
FALSE)
htmlTable(results.no.ci)
#> <table class='gmisc_table' style='border-collapse: collapse; margin-top: 1em; margin-bottom: 1em;' id='table_4'>
#> <tbody>
#> <tr style='border-top: 2px solid grey;'>
#> <td style='border-top: 2px solid grey; border-bottom: 2px solid grey; text-align: center;'><table><tr><td style="text-align: right; white-space: nowrap;">Reference:</td><td style="text-align: left; white-space: nowrap;">Test</td></tr><tr><td style="text-align: right; white-space: nowrap;">Accuracy:</td><td style="text-align: left; white-space: nowrap;">0.55</td></tr><tr><td style="text-align: right; white-space: nowrap;">Sensitivity:</td><td style="text-align: left; white-space: nowrap;">0.4444</td></tr><tr><td style="text-align: right; white-space: nowrap;">Specificity:</td><td style="text-align: left; white-space: nowrap;">0.6364</td></tr><tr><td style="text-align: right; white-space: nowrap;">PPV:</td><td style="text-align: left; white-space: nowrap;">0.5</td></tr><tr><td style="text-align: right; white-space: nowrap;">NPV:</td><td style="text-align: left; white-space: nowrap;">0.5833</td></tr><tr><td style="text-align: right; white-space: nowrap;">kappa:</td><td style="text-align: left; white-space: nowrap;">0.0816</td></tr></table></td>
#> </tr>
#> </tbody>
#> </table>