Build cutpoint variables
build_cuts.Rd
Transforms an ordinal variable into anywhere from two to five groups for cutpoint analysis.
Usage
build_cuts(x, n = c("b", "t", "qd", "qn"), var.prefix = NULL, list = FALSE)
Value
By default, a tibble of cutpoint variables built from a categorical
biomarker. The number of columns correspond to all the ways the biomarker
could be cut into n
bins. Each column name starts with a "b", "t",
"qd", or "qn" for "binarization", "trinarization", "quads", or "quints",
respectively, with the levels being compared separated by "v". If
list = FALSE
, each cutpoint variable is an element of a list.
Examples
set.seed(1108)
x <- sample(0:4, size = 1000, replace = TRUE)
build_cuts(x, n = "b")
#> # A tibble: 1,000 × 4
#> b0v1234 b01v234 b012v34 b0123v4
#> <fct> <fct> <fct> <fct>
#> 1 [1,4] [2,4] [0,3) [0,4)
#> 2 [1,4] [2,4] [0,3) [0,4)
#> 3 [1,4] [2,4] [0,3) [0,4)
#> 4 [1,4] [2,4] [0,3) [0,4)
#> 5 0 [0,2) [0,3) [0,4)
#> 6 [1,4] [2,4] [3,4] [0,4)
#> 7 [1,4] [2,4] [0,3) [0,4)
#> 8 [1,4] [0,2) [0,3) [0,4)
#> 9 [1,4] [0,2) [0,3) [0,4)
#> 10 [1,4] [2,4] [3,4] 4
#> # ℹ 990 more rows
build_cuts(x, n = "t")
#> # A tibble: 1,000 × 6
#> t0v1v234 t0v12v34 t0v123v4 t01v2v34 t01v23v4 t012v3v4
#> <fct> <fct> <fct> <fct> <fct> <fct>
#> 1 [2,4] [1,3) [1,4) 2 [2,4) [0,3)
#> 2 [2,4] [1,3) [1,4) 2 [2,4) [0,3)
#> 3 [2,4] [1,3) [1,4) 2 [2,4) [0,3)
#> 4 [2,4] [1,3) [1,4) 2 [2,4) [0,3)
#> 5 0 0 0 [0,2) [0,2) [0,3)
#> 6 [2,4] [3,4] [1,4) [3,4] [2,4) 3
#> 7 [2,4] [1,3) [1,4) 2 [2,4) [0,3)
#> 8 1 [1,3) [1,4) [0,2) [0,2) [0,3)
#> 9 1 [1,3) [1,4) [0,2) [0,2) [0,3)
#> 10 [2,4] [3,4] 4 [3,4] 4 4
#> # ℹ 990 more rows
build_cuts(x, n = "t", var.prefix = "PHGDH")
#> # A tibble: 1,000 × 6
#> PHGDH_t0v1v234 PHGDH_t0v12v34 PHGDH_t0v123v4 PHGDH_t01v2v34 PHGDH_t01v23v4
#> <fct> <fct> <fct> <fct> <fct>
#> 1 [2,4] [1,3) [1,4) 2 [2,4)
#> 2 [2,4] [1,3) [1,4) 2 [2,4)
#> 3 [2,4] [1,3) [1,4) 2 [2,4)
#> 4 [2,4] [1,3) [1,4) 2 [2,4)
#> 5 0 0 0 [0,2) [0,2)
#> 6 [2,4] [3,4] [1,4) [3,4] [2,4)
#> 7 [2,4] [1,3) [1,4) 2 [2,4)
#> 8 1 [1,3) [1,4) [0,2) [0,2)
#> 9 1 [1,3) [1,4) [0,2) [0,2)
#> 10 [2,4] [3,4] 4 [3,4] 4
#> # ℹ 990 more rows
#> # ℹ 1 more variable: PHGDH_t012v3v4 <fct>
str(build_cuts(x, n = "qd", list = TRUE))
#> List of 4
#> $ qd0v1v2v34: Factor w/ 4 levels "0","1","2","[3,4]": 3 3 3 3 1 4 3 2 2 4 ...
#> $ qd0v1v23v4: Factor w/ 4 levels "0","1","[2,4)",..: 3 3 3 3 1 3 3 2 2 4 ...
#> $ qd0v12v3v4: Factor w/ 4 levels "0","[1,3)","3",..: 2 2 2 2 1 3 2 2 2 4 ...
#> $ qd01v2v3v4: Factor w/ 4 levels "[0,2)","2","3",..: 2 2 2 2 1 3 2 1 1 4 ...