Generate cohort characteristics
doCohortCharacteristics.Rd
Generate cohort characteristics
Usage
doCohortCharacteristics(
input.d,
marker.name,
marker.description,
var.names,
is.var.continuous,
var.descriptions,
marker.value.labels.tolower = TRUE,
show.missing = TRUE,
show.missing.continuous = TRUE,
do.droplevels = TRUE,
show.percent = "both",
stat.tests = NULL,
chisq.test.simulate.p.value = FALSE,
stat.test.column.header = "association/correlation test",
show.test.name = TRUE,
round.digits.p.value = 4,
num.boot = 1000,
missing.codes.highlight = NULL,
missing.codes = c("N/A", "", "Unk"),
decimal = 0,
caption = NA,
html.table.border = 0,
banded.rows = FALSE,
css.class.name.odd = "odd",
css.class.name.even = "even",
custom.marker.labels = NULL,
custom.total.label = NULL,
split.table = 200,
...
)
Arguments
- input.d
The
data.frame
containing the data- marker.name
The variable that you want to split into different columns
- marker.description
The description for the variable(s) to split
- var.names
The variables that you want the statistics for
- is.var.continuous
Vector of length equal to the length of var.names with 1 indicating a continuous variable and 0 otherwise (this should be inferred in the function)
- var.descriptions
Vector of strings to describe the variables as they are to appear in the table
- marker.value.labels.tolower
Indicator as to whether to put marker value labels to lower case
- show.missing
an indicator to whether to show missing values
- show.missing.continuous
if set to
FALSE
andshow.missing == FALSE
, will not show the number of missing cases for continuous variables. Otherwise, it shows the number of missing for continuous variables even ifshow.missing == FALSE
.- do.droplevels
drop categories of unobserved levels set to
TRUE
- show.percent
defaults to "both" which shows both rows and columns other possible values: "column", "row".
- stat.tests
statistical test to perform.
NULL
indicates do not do test for all variables,NA
indicates do not do test for specified variable. Tests: chisq, fisher, ttest, wilcox, kendall, spearman, pearson, kruskal, confusionMarkerAsRef, confusionVarAsRef- chisq.test.simulate.p.value
Whether to simulate p-value for chi-square test. this parameter is ignored if chi-square is not used. Default value=FALSE
- stat.test.column.header
The name to show on the header defaults to "association/correlation test"
- show.test.name
logical; if
TRUE
(default), the name of each test is prepended to the p-value- round.digits.p.value
The number of digits to round the P values
- num.boot
the number of bootstrap samples for any bootstrap method that may be used
- missing.codes.highlight
default to
NULL
this indicates whether we wanted the missing values broken down down or lumped together.- missing.codes
a vector to indicate how missing values are coded, default is
c("N/A", "", "Unk")
- decimal
number of decimal places to show for aggregate numbers such as proportions or averages; default to 0
- caption
caption to use for the Table
- html.table.border
the border type to use for html tables
- banded.rows
If
TRUE
, rows have alternating shading colour- css.class.name.odd
Used to set the row colour for odd rows
- css.class.name.even
Used to set the row colour for even rows
- custom.marker.labels
labels of marker to show; default
NULL
means using existing value label of the marker- custom.total.label
label of the "Total" column; default
NULL
means show "Total"- split.table
number of chars per row before table is split.
- ...
additional arguments to
pander
Value
A table with statistics reported for multiple variables, such as mean, median, and range for continuous variables and proportions and percentages for categorical variables. Relevant association and correlation tests are performed as well.
Examples
dcc <- doCohortCharacteristics( input.d = mtcars, marker.name = "cyl",
marker.description = "cylinders", var.names = c("disp", "hp"),
var.descriptions = c("displacement", "horsepower"), is.var.continuous =
c(TRUE, TRUE), caption = "Some mtcars summaries")
htmlTable::htmlTable(dcc$result.table.html)
#> <table class='gmisc_table' style='border-collapse: collapse; margin-top: 1em; margin-bottom: 1em;' id='table_4'>
#> <tbody>
#> <tr style='border-top: 2px solid grey;'>
#> <td style='border-top: 2px solid grey; border-bottom: 2px solid grey; text-align: center;'><table border=0><caption style='display: table-caption; text-align: left;'>Some mtcars summaries</caption><tr><th style='border-bottom: 1px solid grey; border-top: 4px double grey; text-align: center; padding-right:10px; padding-right:10px;' colspan=2></th><th style='border-bottom: 1px solid grey; border-top: 4px double grey; text-align: center; padding-right:10px; padding-right:10px;'>total</th><th style='border-bottom: 1px solid grey; border-top: 4px double grey; text-align: center; padding-right:10px; padding-right:10px;'>cylinders 4</th><th style='border-bottom: 1px solid grey; border-top: 4px double grey; text-align: center; padding-right:10px; padding-right:10px;'>cylinders 6</th><th style='border-bottom: 1px solid grey; border-top: 4px double grey; text-align: center; padding-right:10px; padding-right:10px;'>cylinders 8</th></tr><tr><th style='text-align: left; padding-right:10px; padding-right:10px;' colspan=2>total</th><td>32 (100%)</td><td>11 (34%)</td><td>7 (22%)</td><td>14 (44%)</td><td></td></tr><tr><th style='text-align: left; padding-right:10px; padding-right:10px;' colspan=2>displacement</th><td></td><td></td><td></td><td></td></tr><tr><th> </th><th style='text-align: left; padding-right:10px; padding-right:10px;'>mean (SD)</th><td>231 (124)</td><td>105 (27)</td><td>183 (42)</td><td>353 (68)</td></tr><tr><th> </th><th style='text-align: left; padding-right:10px; padding-right:10px;'>median</th><td>196</td><td>108</td><td>168</td><td>350</td></tr><tr><th> </th><th style='text-align: left; padding-right:10px; padding-right:10px;'>IQR</th><td>121 to 326</td><td> 79 to 121</td><td>160 to 196</td><td>302 to 390</td></tr><tr><th> </th><th style='text-align: left; padding-right:10px; padding-right:10px;'>range</th><td> 71 to 472</td><td> 71 to 147</td><td>145 to 258</td><td>276 to 472</td></tr><tr><th> </th><th style='text-align: left; padding-right:10px; padding-right:10px;'>missing</th><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><th style='text-align: left; padding-right:10px; padding-right:10px;' colspan=2>horsepower</th><td></td><td></td><td></td><td></td></tr><tr><th> </th><th style='text-align: left; padding-right:10px; padding-right:10px;'>mean (SD)</th><td>147 (69)</td><td>83 (21)</td><td>122 (24)</td><td>209 (51)</td></tr><tr><th> </th><th style='text-align: left; padding-right:10px; padding-right:10px;'>median</th><td>123</td><td>91</td><td>110</td><td>192</td></tr><tr><th> </th><th style='text-align: left; padding-right:10px; padding-right:10px;'>IQR</th><td> 96 to 180</td><td>66 to 96</td><td>110 to 123</td><td>176 to 241</td></tr><tr><th> </th><th style='text-align: left; padding-right:10px; padding-right:10px;'>range</th><td> 52 to 335</td><td> 52 to 113</td><td>105 to 175</td><td>150 to 335</td></tr><tr><th> </th><th style='text-align: left; padding-right:10px; padding-right:10px;'>missing</th><td>0</td><td>0</td><td>0</td><td>0</td></tr></table></td>
#> </tr>
#> </tbody>
#> </table>