Tests for Independence in Contingency Tables
indepTests.Rd
The Pearson's Chi-Squared test, likelihood ratio (G test) of independence, Fisher's Exact test, and linear-by-linear association test are performed on the data matrix.
Value
A table with method name, test statistic, degrees of freedom, and p-value reported for each Chi-squared test.
Details
A Pearson's Chi-Squared test Yate's Continuity Correction is applied in the case of 2 by 2 tables.
Examples
# Example from documentation of CrossTable
library(descr)
data(esoph, package = "datasets")
ct <- CrossTable(esoph$alcgp, esoph$agegp, expected = TRUE,
chisq = FALSE, prop.chisq = FALSE,
dnn = c("Alcohol consumption", "Tobacco consumption"))
indepTests(ct)
#> Test Value df P-Value
#> Pearson Chi-Square Pearson Chi-Square <NA> <NA> <NA>
#> Continuity Correction Continuity Correction <NA> <NA> <NA>
#> Likelihood Ratio Likelihood Ratio 1.42 15 1
#> Fisher's Exact Test Fisher's Exact Test <NA> <NA> <NA>
#> Linear-by-Linear Association Linear-by-Linear Association -0.142 1 0.887
#> 6 N of Valid Cases 88
# Better example
set.seed(1108)
A <- rbinom(100, 3, 0.2)
B <- rbinom(100, 4, 0.8)
ct <- CrossTable(A, B)
#> Warning: Chi-squared approximation may be incorrect
indepTests(ct)
#> Test Value df P-Value
#> Pearson Chi-Square Pearson Chi-Square <NA> <NA> <NA>
#> Continuity Correction Continuity Correction <NA> <NA> <NA>
#> Likelihood Ratio Likelihood Ratio 14.36 9 0.11
#> Fisher's Exact Test Fisher's Exact Test <NA> <NA> <NA>
#> Linear-by-Linear Association Linear-by-Linear Association 0.274 1 0.784
#> 6 N of Valid Cases 100