Skip to contents

Print nice summaries from objects returned by logistf.

Usage

logistfPrint(fit, digits = 3)

Arguments

fit

a fit object returned by logistf

digits

number of digits to round to

Value

A data frame with a row for each predictor and the following columns

coef

log odds ratio

exp(coef)

odds ratio

lower

lower confidence bound of odds ratio for specified level

upper

upper confidence bound of odds ratio for specified level

p

p-value

Details

There is a lot of raw output from logistf, and it is not easy to extract the coefficient table. This function provides a convenient wrapper to return summaries from logistf.

Author

Samuel Leung, Derek Chiu

Examples

library(logistf)
data(sex2)
fit <- logistf(case ~ age + oc + vic + vicl + vis + dia, data = sex2,
alpha = 0.1)
summary(fit)
#> logistf(formula = case ~ age + oc + vic + vicl + vis + dia, data = sex2, 
#>     alpha = 0.1)
#> 
#> Model fitted by Penalized ML
#> Coefficients:
#>                    coef  se(coef)  lower 0.9  upper 0.9       Chisq
#> (Intercept)  0.12025405 0.4763429 -0.6673577  0.9177303  0.06286298
#> age         -1.10598131 0.4149021 -1.8277045 -0.4328451  7.50773092
#> oc          -0.06881673 0.4344026 -0.7986318  0.6507581  0.02467044
#> vic          2.26887464 0.5384872  1.4248338  3.2325326 22.93139022
#> vicl        -2.11140817 0.5320395 -3.0613215 -1.2704704 19.10407252
#> vis         -0.78831694 0.4089620 -1.4743338 -0.1137542  3.69740975
#> dia          3.09601166 1.5052197  1.0835108  6.8752016  7.89693139
#>                        p method
#> (Intercept) 8.020268e-01      2
#> age         6.143472e-03      2
#> oc          8.751911e-01      2
#> vic         1.678877e-06      2
#> vicl        1.237805e-05      2
#> vis         5.449701e-02      2
#> dia         4.951873e-03      2
#> 
#> Method: 1-Wald, 2-Profile penalized log-likelihood, 3-None
#> 
#> Likelihood ratio test=49.09064 on 6 df, p=7.15089e-09, n=239
#> Wald test = 31.96835 on 6 df, p = 1.654713e-05

## Streamlined summary
logistfPrint(fit)
#>               coef exp(coef) lower 0.9 upper 0.9     p
#> (Intercept)  0.120     1.128     0.513     2.504 0.802
#> age         -1.106     0.331     0.161     0.649 0.006
#> oc          -0.069     0.933     0.450     1.917 0.875
#> vic          2.269     9.669     4.157    25.344 0.000
#> vicl        -2.111     0.121     0.047     0.281 0.000
#> vis         -0.788     0.455     0.229     0.892 0.054
#> dia          3.096    22.110     2.955   967.970 0.005